6 F eb 2 00 6 Associativity as Commutativity
نویسنده
چکیده
It is shown that coherence conditions for monoidal categories concerning associativity are analogous to coherence conditions for symmetric or braided strictly monoidal categories, where associativity arrows are identities. Mac Lane’s pentagonal coherence condition for associativity is decomposed into conditions concerning commutativity, among which we have a condition analogous to naturality and a degenerate case of Mac Lane’s hexagonal condition for commutativity. This decomposition is analogous to the derivation of the Yang-Baxter equation from Mac Lane’s hexagon and the naturality of commutativity. The pentagon is reduced to an inductive definition of a kind of commutativity. Mathematics Subject Classification (2000): 18D10, 18A05
منابع مشابه
ar X iv : m at h / 05 06 60 0 v 13 [ m at h . C T ] 1 6 M ay 2 00 7 Associativity as Commutativity
It is shown that coherence conditions for monoidal categories concerning associativity are analogous to coherence conditions for symmetric or braided strictly monoidal categories, where associativity arrows are identities. Mac Lane’s pentagonal coherence condition for associativity is decomposed into conditions concerning commutativity, among which we have a condition analogous to naturality an...
متن کامل1 1 M ar 2 00 6 Associativity as Commutativity
It is shown that coherence conditions for monoidal categories concerning associativity are analogous to coherence conditions for symmetric or braided strictly monoidal categories, where associativity arrows are identities. Mac Lane’s pentagonal coherence condition for associativity is decomposed into conditions concerning commutativity, among which we have a condition analogous to naturality an...
متن کامل2 00 6 Associativity as Commutativity
It is shown that coherence conditions for monoidal categories concerning associativity are analogous to coherence conditions for symmetric or braided strictly monoidal categories, where associativity arrows are identities. Mac Lane’s pentagonal coherence condition for associativity is decomposed into conditions concerning commutativity, among which we have a condition analogous to naturality an...
متن کاملar X iv : m at h / 06 10 93 4 v 2 [ m at h . C T ] 3 1 O ct 2 00 6 Medial Commutativity
It is shown that all the assumptions for symmetric monoidal categories flow out of a unifying principle involving natural isomorphisms of the type (A ∧B) ∧ (C ∧D) → (A ∧ C) ∧ (B ∧D), called medial commutativity. Medial commutativity in the presence of the unit object enables us to define associativity and commutativity natural isomorphisms. In particular, Mac Lane’s pentagonal and hexagonal coh...
متن کاملar X iv : m at h / 06 10 93 4 v 6 [ m at h . C T ] 4 A pr 2 00 7 Medial Commutativity
It is shown that all the assumptions for symmetric monoidal categories flow out of a unifying principle involving natural isomorphisms of the type (A ∧B) ∧ (C ∧D) → (A ∧ C) ∧ (B ∧D), called medial commutativity. Medial commutativity in the presence of the unit object enables us to define associativity and commutativity natural isomorphisms. In particular, Mac Lane’s pentagonal and hexagonal coh...
متن کامل